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Guglielmo Röntgen 1, 20136 Milan, Italy

http://www.dondena.unibocconi.it

The opinions expressed in this working paper are those of the authors and not
those of the Dondena Centre which does not take an institutional policy position.

c© Copyright is retained by the authors.





Using Panel Data
to Partially Identify HIV Prevalence

When HIV Status Is Not Missing at Random

Bruno Arpino
Department of Political and Social Sciences

Universitat Pompeu Fabra
C/ Ramon Trias Fargas 25-27, 08005 Barcelona, Spain

Elisabetta De Cao
University of Groningen, Department of Pharmacy

Unit of PharmacoEpidemiology & PharmacoEconomics (PE2)
Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands

Corresponding author e.de.cao@rug.nl

Franco Peracchi
Faculty of Economics

University of Rome Tor Vergata
Via Columbia 2, I-00133 Rome, Italy

Abstract

Good estimates of HIV prevalence are important for policy makers in order to plan
control programs and interventions. Although population-based surveys are now con-
sidered the “gold standard” to monitor the HIV epidemic, they are usually plagued
by problems of nonignorable nonresponse. This paper uses the partial identification
approach to assess the uncertainty caused by missing HIV status. We show how to
exploit the availability of panel data and the absorbing nature of HIV infection to
narrow the worst-case bounds without imposing assumptions on the missing-data
mechanism. Applied to longitudinal data from rural Malawi, the Malawi Diffusion
and Ideational Change Project (MDICP), our approach results in a reduction of
the width of the worst-case bounds by about 18.2 percentage points in 2004, 13.2
percentage points in 2006, and 2.4 percentage points in 2008. We also use plausi-
ble instrumental variable and monotone instrumental variable restrictions to further
narrow the bounds.
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1 Introduction

The prevalence of HIV in a population is defined as the proportion of people who are

infected or, equivalently, the probability that a randomly drawn individual has the

disease. Having reliable estimates of the HIV prevalence is essential for policy makers

in order to plan control programs and interventions. Since the mid-1980s, the main-

stay for monitoring the HIV epidemic has been facility-based sentinel surveillance

data. Based on these data, HIV prevalence in developing countries has been found

to be higher among women, sexually active people, and in urban areas. In many

cases, estimates have been derived from pregnant women attending antenatal clinics

(ANC) (Brookmeyer, 2010). ANC data have several sources of bias. First, they are

only representative of pregnant women who are sexually active, and exclude men.

Second, they may provide biased estimates even for the sub-population of pregnant

women because of the selective location of the clinics, mostly concentrated in urban

areas. As a result, ANC-based estimates of HIV prevalence may be substantively

biased upward (Gouws et al., 2008; Montana et al., 2008; Reniers and Eaton, 2009).

In recent years, many large-scale national surveys began to include biomarker

modules to collect information on HIV serostatus. These biometric surveys are an

important new source of data because they accurately measure HIV status and,

unlike ANC-based surveys, are not restricted to a selected sub-population. Estimates

of HIV prevalence derived from biometric surveys are, in general, considerably lower

than those based on ANC data (Gouws et al., 2008; Montana et al., 2008). Based on

these new results, UNAIDS corrected downward HIV prevalence estimates in several

countries (Brookmeyer, 2010).

Although population-based surveys are now considered the “gold standard” to

monitor the HIV epidemic (Boerma et al., 2003; Gouws et al., 2008; Mishra et al.,

2008; Martin-Herz et al., 2006; Garcia-Calleja et al., 2006; Sakarovitch et al., 2007),



these data may be affected by a different but not necessarily less severe source of

bias, due to missing data on the respondents’ HIV status. There are two main causes

of missing data: refusal to take the HIV test and temporary absence or migration of

the respondent. Approaches that discard cases with missing HIV status (complete-

case analysis) implicitly rely on the assumption that data are missing completely

at random (MCAR) (Rubin, 1976). Because MCAR implies that the distribution

of observable characteristics should be the same for cases with and without missing

data, this assumption is easily testable and is often rejected by the data. Failure of

the MCAR assumption is likely to produce biased estimates of HIV prevalence.

To relax the MCAR assumption, imputation and weighting techniques are fre-

quently used. These methods, based on the weaker assumption that data are missing

at random (MAR) (Little and Rubin, 1987; Rubin, 1989), produce unbiased estimates

only if the missing data mechanism does not depend on unobservables. In fact, many

important sources of differences between individuals (such as knowledge or percep-

tions about one’s HIV status), are unobservable, so HIV prevalence estimates based

on the MAR assumption may be severely biased. For example, there is evidence that

people refusing to be tested have higher risk of being infected (Reniers and Eaton,

2009). It has also been found that those who are not interviewed because of migra-

tion have higher risk of being HIV infected (Marston et al., 2008; Crampin et al.,

2003; Obare, 2010). Anglewicz (2007) analyzes this phenomenon using data from a

follow-up specifically designed to interview respondents who did not participate in

one wave of a panel survey for Malawi because of absence. He finds that migrants

are likely to report a higher number of sexual partners and to be HIV positive. An

explanation is that HIV infected people are more likely to migrate as a consequence

of union dissolution due to death of the partner or divorce.

Unlike MCAR, the MAR assumption is essentially untestable and several ap-
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proaches have been proposed to avoid it (see Vella, 1998, for a survey). These ap-

proaches have recently been used to estimate HIV prevalence (Lachaud, 2007; Reniers

and Eaton, 2009; Barnighausen et al., 2011). For example, using a Heckman-type

selection model (Heckman, 1979) Barnighausen et al. (2011) show that prevalence

estimates can be very severely underestimated when missingness depends on unob-

served variables. One problem with these alternative approaches, however, is that

they tend to impose strong restrictions on the distribution of the unobservables.

The aim of our paper is to study what can be learned about HIV prevalence

when data are subject to non-ignorable missing data mechanisms avoiding strong

untestable assumptions. We follow Horowitz and Manski (1998) and Manski (1995,

2003) and switch the focus away from point identification, which typically relies on a

combination of strong requirements about the data and strong assumptions about the

model, to partial identification. We first use the empirical evidence alone to identify

a region of credible values for HIV prevalence. We then exploit the availability of

panel data and the absorbing nature of HIV infection to narrow the width of this

region. Although additional assumptions, such as instrumental variable (IV) and

monotone instrumental variable (MIV) restrictions, may be used to further narrow

the width of the identification region, our main contribution is to show the power

of combining substantive information about the HIV process with the longitudinal

nature of the data.

Our data come from the Malawi Diffusion and Ideational Change Project (MDICP),

a longitudinal survey conducted every two years in rural Malawi since 1998. Start-

ing from 2004, a biometric survey has been added to the main survey allowing the

estimation of HIV prevalence. Malawi is one of the countries most affected by the

HIV epidemic. Out of a population of 15 million people, 80% of them living in rural

areas, almost one million people are living with HIV and AIDS is the leading cause
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of death among adults. The national HIV prevalence rate, based on the 2004 Malawi

Demographic and Health Survey (MDHS), is equal to 11.8% for people aged 15–49.

Like for most countries in sub-Saharan Africa, where HIV is mainly transmitted via

heterosexual contact, HIV prevalence is estimated to be higher for women than for

men (13.3% against 10.2%), and to be higher in urban than in rural areas (17.1%

versus 10.8%). Although the MDICP may only be considered representative of the

population of rural Malawi, it has the advantage over the MDHS of being a longitu-

dinal survey. Further, unlike the MDHS for which a biomarker module is currently

available only for 2004, biometric data from the MDICP are available for 2004, 2006

and 2008.

The remainder of this paper is organised as follows. Section 2 describes the data

and the problem of missing information on HIV status. Section 3 reviews the partial

identification approach and shows how to exploit the longitudinal nature of the data

and the absorbing nature of HIV infection to narrow the worst-case bounds. It

also discusses how to use plausible IV and MIV restrictions to further narrow the

bounds. Section 4 presents the estimated HIV prevalence bounds for the whole

population and, separately, by region, gender and cohort. Finally, Section 5 offers

some conclusions.

2 Data

We use data from the Malawi Diffusion and Ideational Change Project (MDICP), a

longitudinal survey conducted in rural Malawi (the data can be freely downloaded

from the following website: http://www.malawi.pop.upenn.edu). The MDICP

is the result of a collaboration of the University of Pennsylvania with the College

of Medicine and Chancellor College at the University of Malawi. This data set is

particularly interesting for our purposes because it is longitudinal and includes HIV
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tests for the years 2004, 2006 and 2008.

2.1 MDICP survey

The MDICP survey has been carried out in three of the 28 Malawian districts, one

for each of the three administrative regions of the country: Balaka in the South,

Mchinji in the Center and Rumphi in the North. The three regions are significantly

different in terms of ethnic composition, language, religious practice, population

density, literacy, and prevailing social system (e.g. patrilocal or matrilocal residence).

The first wave of the survey was carried out in 1998, interviewing 1,541 ever-

married women of childbearing age and 1,198 men, most of them husbands of the

married women in the sample. The second wave, carried out in 2001, followed-up

the respondents and interviewed the new spouses of respondents who got married

between the first and the second wave (Watkins et al., 2003). The third wave, carried

out in 2004, augmented the original sample with a random sample of about 1,500 peo-

ple aged 15–28 (both married and never-married), to correct for ageing of the baseline

sample and the fact that the original sample was restricted to ever-married women

and their husband. With this addition, the survey may be regarded as broadly repre-

sentative of the population of rural Malawi (see http://www.malawi.pop.upenn.edu

for further details about the sampling strategy). The fourth (2006) and fifth (2008)

waves added the spouses of newly married people.

The survey instrument asks about sexual relations, risk assessments, marriage and

partnership histories, household rosters and transfers, as well as income and other

measures of wealth. It also includes information on village-level variables, regional

market prices, and weather conditions. The survey instrument was translated from

English in the three most common local languages (Yao, Chichewa, and Tumbuka).

Interviews were carried out face-to-face by interviewers who spoke the same language
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as the interviewees and were hired and trained locally.

Starting from 2004, a biometric survey, called the voluntary consulting and test

(VCT) survey, has been added to the main survey. The VCT survey consists of a

short questionnaire, submitted a few days after the main survey and focused on sex-

ual behaviour and AIDS related questions, and free tests for HIV and other sexually

transmitted infections administered by nurses from outside the area. Respondents to

the VCT survey are also offered pre-test counselling about HIV prevention strategies.

In 2004, oral swabs were used for the HIV test and results were given to respondents

2–4 months after testing. In 2006 and 2008, the MDICP team tested only for HIV

using an improved testing procedure consisting of rapid response blood test. Mea-

surement error in the two types of tests (oral swabs and blood test) is very limited

and, being due only to the accuracy limit of the measuring instruments, can be

considered as random.

Although the survey was not designed to be representative of the population in

rural Malawi, the characteristics of the 2004 sample closely match those of the 2004

MDHS for rural Malawi (Thornton, 2008). We focus on people interviewed in 2004,

excluding new entrants in 2006 and 2008, and dropping from the sample people who

were never successfully contacted. Because prevalence is defined on the population

of alive people, our working sample consists of 4,062 persons who were alive in 2004.

When computing HIV prevalence for 2006 and 2008, we exclude people who died

after 2004.

2.2 Missing data

In each of the three waves considered, HIV status is missing for a substantial fraction

of the sample. Missing HIV status may arise from either unit or item nonresponse.

We define as unit nonresponse the case in which both the main and the VCT survey
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are missing because of failure to establish a contact or refusal to cooperate. Item

nonresponse occurs when HIV status is not available for responding units.

There are different patterns of unit nonresponse across our three waves. About

55% of the sample are unit respondents in all three waves, about 12% are unit

respondents in 2004 and unit nonrespondents in 2006 and 2008, about 11% are unit

respondents in 2004 and 2006 and unit nonrespondents in 2008, about 8% are unit

respondents in 2004 and 2008 and unit nonrespondents in 2006, while the remaining

14% include the other patterns of unit nonresponse.

Table 1 shows the various sources of missing data. Overall, the fraction with

missing HIV status is 29% in 2004, about 37% in 2006 and rises to 42% in 2008

due to the increase in item nonresponse from 14% to 18% and to a larger increase

in unit nonresponse from 15% to 24%. The main reason for unit nonresponse, and

for its increase across waves, is migration. Hospitalisation and refusal to partici-

pate are relatively unimportant. Other reasons for unit nonresponse are lumped

into the residual category ‘other’, consisting mainly of people who did not fill the

questionnaire because too old or too sick, or for unknown reasons. People who are

unit nonrespondents because of migration, unknown reasons or ‘other’ reasons will

be assumed to be alive when computing the bounds.

The main reason for item nonresponse is refusal to get tested although, in 2004,

the refusal rate in the MDICP (6.3%) is lower than for the MDHS in rural areas

(21.7%). Thornton (2008) argues that this may be due to the method of testing

(oral swabs) and the fact that the MDICP does not require respondents to learn their

results at the time of testing. However, low refusal rates in the MDCIP are also found

in 2006 and 2008. In very few cases the results of the HIV test are indeterminate

or have been lost. Other reasons for item nonresponse are lumped into the category

‘other’, consisting of people who completed the main survey but not the VCT survey,
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Table 1: Distribution of types of unit respondents and nonrespondents by wave.

2004 2006 2008
Freq Perc Freq Perc Freq Perc

UNIT RESPONDENTS
HIV negative 2700 66.47 2408 59.28 2116 52.09
HIV positive 177 4.36 123 3.03 117 2.88
Item nonresponse

Test refused 256 6.30 200 4.92 172 4.23
Indeterminate 14 0.34 6 0.15 1 0.02
Results lost 24 0.59 0.00 0.00 0.00 0.00
Other† 319 7.85 313 7.71 569 14.01
UNIT NONRESPONDENTS
Refused 27 0.66 11 0.27 58 1.43
Moved 184 4.53 479 11.79 470 11.57
Temporarily absent 36 0.89 41 1.01 76 1.87
Hospitalized 6 0.15 5 0.12 1 0.02
Other‡ 319 7.85 432 10.64 359 8.84
Dead / / 44 1.08 123 3.03

Total§ 4062 100 4062 100 4062 100
†People that fulfil the first part of the questionnaire, but not the second, for example

because they were temporarily absent during the biomarker collection.

‡People who did not fulfil the questionnaire for unknown reasons or because

too old or too sick.

§The new entrants 2006/2008 are excluded.

for example because they were temporarily absent. The importance of this residual

category almost doubled between 2004 and 2008.

The classification of the different sources of missing data is important. Ignoring

missing data due to refusal to be tested or migration may bias the HIV prevalence

estimate downward (Reniers and Eaton, 2009; Obare, 2010). On the other hand,

missing data due to loss of test results are not a major source of concern and may

be considered as purely random.
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3 Partial identification of HIV prevalence

To formalise our problem, consider a population that, at a given time t, consists of

Nt living individuals who can be either susceptible to HIV or infected. A susceptible

individual is a member of the population who, at a given point in time, is at risk of

becoming infected by the disease.

HIV status of individual i at time t is represented by the binary indicator yit,

which is equal to one if individual i is HIV positive and to zero otherwise. HIV

prevalence at time t is just the proportion, πt = N−1
t

∑Nt

i=1 yit, of HIV infected

people, which in turn is equal to Pr(Yt = 1), where Yt is a binary random variable

equal to one if a randomly selected individual is HIV positive at time t and to zero

otherwise.

Our aim is to construct informative bounds for πt when HIV status is missing

for a fraction of individuals in the population. As argued in the previous section, in

our data measurement error is negligible and may be considered as purely random.

Thus, unlike Kreider and Pepper (2007) and Nicoletti et al. (2011), we ignore this

problem and focus on the uncertainty about πt caused by missing data.

3.1 Bounds with cross-sectional data

We first consider the problem of bounding HIV prevalence when data are only avail-

able at a given point in time, as in a single cross-section or when the longitudinal

dimension of a panel survey is ignored.

By the law of total probability, we can write HIV prevalence at time t as

πt = Pr(Yt = 1|Dt = 1) Pr(Dt = 1) + Pr(Yt = 1|Dt = 0) Pr(Dt = 0), (1)

where Dt is a binary indicator equal to one if HIV status is known and to zero

otherwise. As pointed out by Manski (1989), the missing data problem arises because
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the data tell us nothing about Pr(Yt = 1|Dt = 0). However, because 0 ≤ Pr(Yt =

1|Dt = 0) ≤ 1, substituting the lower and upper bounds for Pr(Yt = 1|Dt = 0) into

(1) gives the following lower and upper bounds on πt

LBt = Pr(Yt = 1|Dt = 1) Pr(Dt = 1) = Pr(Yt = 1, Dt = 1),

UBt = Pr(Yt = 1|Dt = 1) Pr(Dt = 1) + Pr(Dt = 0),

= Pr(Yt = 1, Dt = 1) + Pr(Dt = 0).

These bounds are often referred to as worst-case bounds. If only a cross-section is

available, these bounds are sharp because they use all the available information.

The identification region for πt consists of all the points in the interval between

LBt and UBt. The width Wt = UBt−LBt of this region is equal to the nonresponse

probability Pr(Dt = 0), which therefore represents a direct measure of the uncer-

tainty about HIV prevalence caused by nonresponse (Horowitz and Manski, 1998).

Without nonresponse, there is no uncertainty about πt. When nonresponse is fre-

quent, the uncertainty is large. In this case, an important issue is whether there exist

credible restrictions on the HIV process that may be used to narrow the worst-case

bounds.

3.2 Bounds with panel data

HIV infection is an absorbing state: a person infected at any given time has zero

probability of becoming susceptible at later times, while a person susceptible at any

given time has probability one of being susceptible at earlier times. These simple

considerations help narrow the worst-case bounds when panel data are available

and HIV status of people who are nonrespondent in one wave may be observed in

other waves. We will refer to the resulting bounds as ‘dynamic’, because they use

restrictions on the dynamics of the HIV epidemic. To keep things simple, we only

present results for the case of short panels with two or three waves. The Appendix A
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presents the results for the general case of a panel with P ≥ 1 waves before wave t,

or F ≥ 1 waves after wave t, or both.

Suppose first that we use only two waves of a panel, at times t and t + 1. To

narrow the worst-case bounds on πt, consider again equation (1) and notice that

Pr(Yt = 1|Dt = 0) = Pr(Yt = 1|Dt+1 = 0, Dt = 0) Pr(Dt+1 = 0|Dt = 0)+

+ Pr(Yt = 1|Dt+1 = 1, Dt = 0) Pr(Dt+1 = 1|Dt = 0),

where

Pr(Yt = 1|Dt+1 = 1, Dt = 0) =

= Pr(Yt = 1|Yt+1 = 1, Dt+1 = 1, Dt = 0) Pr(Yt+1 = 1|Dt+1 = 1, Dt = 0),

since Pr(Yt = 1|Yt+1 = 0, Dt+1 = 1, Dt = 0) = 0 due to the absorbing nature of HIV

status. Thus, we can rewrite (1) as

Pr(Yt = 1) = Pr(Yt = 1, Dt = 1)+

+ Pr(Yt = 1|Dt+1 = 0, Dt = 0) Pr(Dt+1 = 0, Dt = 0)+

+ Pr(Yt = 1|Yt+1 = 1, Dt+1 = 1, Dt = 0)×

× Pr(Yt+1 = 1|Dt+1 = 1, Dt = 0) Pr(Dt+1 = 1, Dt = 0).

(2)

From (2) we obtain lower and upper bounds on πt by assuming that the unknown

probabilities Pr(Yt = 1|Dt+1 = 0, Dt = 0) and Pr(Yt = 1|Yt+1 = 1, Dt+1 = 1, Dt = 0)

are respectively equal to their lower bound of zero and their upper bound of one.

Setting both probabilities equal to zero gives the lower bound

LB
(+1)
t = LBt,

11



while setting both of them equal to one gives the upper bound

UB
(+1)
t = Pr(Yt = 1, Dt = 1) + Pr(Dt+1 = 0, Dt = 0)+

+ Pr(Yt+1 = 1|Dt+1 = 1, Dt = 0) Pr(Dt+1 = 1, Dt = 0)

= Pr(Yt = 1, Dt = 1) + Pr(Dt = 0)×

× {Pr(Yt+1 = 1, Dt+1 = 1|Dt = 0) + Pr(Dt+1 = 1|Dt = 0)}

= UBt − Pr(Dt = 0)×

× {1− Pr(Yt+1 = 1, Dt+1 = 1|Dt = 0)− Pr(Dt+1 = 1|Dt = 0)} ,

where the term in square brackets in the last relationship is equal to the conditional

probability that Yt+1 = 0 and Dt+1 = 1 given Dt = 0, and is therefore bounded

between zero and one. With a 2-wave panel, unlike the worst-case bounds, these

new bounds are sharp, as they use all the available information. The width of the

resulting identification region for πt is

W
(+1)
t = UB

(+1)
t − LB(+1)

t = Wt − Pr(Yt+1 = 0, Dt+1 = 1, Dt = 0).

Because Pr(Yt+1 = 0, Dt+1 = 1, Dt = 0) is bounded between zero and one, and

cannot exceed Pr(Dt = 0), we have that 0 ≤ W
(+1)
t ≤ Wt.

Notice that simply knowing the HIV status at t + 1 of people with missing HIV

status at t is not enough to narrow the worst-case bounds. In fact, among the

respondents at t+ 1, only the information about negative HIV status can be used to

infer HIV status at t, so only the upper bound can be reduced relative to the worst-

case. Respondents at t + 1 who are found to be HIV positive cannot be assumed

to have been already HIV positive at t, so the lower bound is the same as in the

worst-case.

If the two waves of the panel are at times t − 1 and t, then we can rewrite the

unknown probability in (1) by exploiting past rather than future information. This
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gives

Pr(Yt = 1|Dt = 0) = Pr(Yt = 1|Dt = 0, Dt−1 = 0) Pr(Dt−1 = 0|Dt = 0)+

+ Pr(Yt = 1|Dt = 0, Dt−1 = 1) Pr(Dt−1 = 1|Dt = 0),

where

Pr(Yt = 1|Dt = 0, Dt−1 = 1) =

= Pr(Yt = 1|Dt = 0, Dt−1 = 1, Yt−1 = 0) Pr(Yt−1 = 0|Dt = 0, Dt−1 = 1)+

+ Pr(Yt−1 = 1|Dt = 0, Dt−1 = 1),

since Pr(Yt = 1|Dt = 0, Dt−1 = 1, Yt−1 = 1) = 1 due to the absorbing nature of HIV

status. Proceeding as before, we obtain the following bounds

LB
(−1)
t = LBt + Pr(Yt−1 = 1, Dt−1 = 1, Dt = 0),

UB
(−1)
t = UBt.

Notice that, unlike the case when future information is used, here the upper bound

is the same as in the worst-case, while the lower bound is greater. This is because

past negative HIV status is uninformative, as we cannot assume that a person who

was HIV negative in the past remains HIV negative in the future, while past positive

HIV status is informative, as a person who was HIV positive in the past remains

HIV positive in the future. The width of the resulting identification region for πt is

W
(−1)
t = UB

(−1)
t − LB(−1)

t = Wt − Pr(Yt−1 = 1, Dt−1 = 1, Dt = 0).

Again, 0 ≤ W
(−1)
t ≤ Wt.

Using three waves of a panel, we can further narrow the identification region for

πt. Suppose that, in addition to wave t, we use one wave before t and one after t.

Then it follows immediately from our previous results that

LB
(−1,+1)
t = LB

(−1)
t ,

UP
(−1,+1)
t = UB

(+1)
t ,

W
(−1,+1)
t = Wt − Pr(Yt+1 = 0, Dt+1 = 1, Dt = 0)−

− Pr(Yt−1 = 1, Dt−1 = 1, Dt = 0).
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Using wave t and two waves after t we instead have

LB
(+2)
t = LB

(+1)
t ,

UB
(+2)
t = UB

(+1)
t − Pr(Yt+2 = 0, Dt+2 = 1, Dt+1 = Dt = 0),

W
(+2)
t = W

(+1)
t − Pr(Yt+2 = 0, Dt+2 = 1, Dt+1 = Dt = 0),

while using wave t and two waves before t we have

LB
(−2)
t = LB

(−1)
t + Pr(Yt−2 = 1, Dt−2 = 1, Dt−1 = Dt = 0),

UB
(−2)
t = UB

(−1)
t ,

W
(−2)
t = W

(−1)
t − Pr(Yt−2 = 1, Dt−2 = 1, Dt−1 = Dt = 0).

In the last two cases, the uncertainty about πt due to missing data decreases because

of either an increase in the lower bound or a decrease in the upper bound, in the first

case because of a combination of the two effects. Increasing the number of available

waves further decreases the uncertainty due to missing data as it is shown in the

Appendix A.

3.3 IV and MIV restrictions

To further narrow the identification region for πt, the restrictions discussed in Sec-

tion 3.2 may be combined with those implied by additional assumptions on the HIV

process.

One possibility are instrumental variable (IV) restrictions (Manski, 1994, 2003).

A random variable is an IV if it helps predict nonresponse but does not help predict

HIV status, possibly after conditioning on a set of observable covariates. Although

it is generally difficult to find valid instrumental variables, a convincing case can

be made for data collection characteristics (characteristics of the interviewer, inter-

view mode, length and design of the questionnaire, etc.), because they help predict

nonresponse (Lepkowski and Couper, 2002; Nicoletti and Peracchi, 2006), but lack

predictive power for HIV status.
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Since IV restrictions are often controversial, another possibility is to impose

weaker monotone instrumental variable (MIV) restrictions (Manski and Pepper,

2000). A random variable is a MIV if it shifts HIV prevalence monotonically, possibly

after conditioning on a set of observable covariates.

4 Results

We illustrate our results by presenting complete-case estimates, worst-case bounds

and dynamic bounds for HIV prevalence in rural Malawi constructed from the

MDICP data for 2004, 2006 and 2008. Since it is of interest for both research and

policy-making to know how the HIV epidemic is spread among different demographic

groups, we present estimates for the whole population and for subgroups defined by

region, gender, and birth cohort. We distinguish between four cohorts: i) Cohort A:

born 1984–1989 (aged 15–20 in 2004), ii) Cohort B: born 1975–1983 (aged 21–29 in

2004), iii) Cohort C: born 1965–1974 (aged 30–39 in 2004), and iv) Cohort D: born

before 1965 (aged 40+ in 2004).

4.1 Complete-case estimates

The complete-case estimates of HIV prevalence in rural Malawi are 6.2% for 2004,

4.9% for 2006, and 5.1% for 2008. These estimates are substantially lower than the

2004 MDHS estimate of 10.8% for rural Malawi, possibly because the MDICP sample

does not include peri-urban areas (Obare et al., 2009), and show no clear trend.

Details about the complete-case estimates are reported in Table 4 of the support-

ing materials. In particular, for the youngest cohort (born 1984–1989), estimated

HIV prevalence is very low in all three waves (between 0 and 4%). Among males it is

always highest for the cohort born before 1965 (about 4-6%) while, among females,

it is highest for the 1975–83 cohort in 2004 (about 9%) and the 1965–74 cohort in
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2006 and 2008 (about 10%). However, since the fraction of the sample with missing

HIV status is very high in each year, uncertainty about the complete-case estimates

is also high.

4.2 Worst-case and dynamic bounds

The bounds introduced in Section 3 are easily estimated non-parametrically by their

sample counterparts. Since they are estimated, their sampling variability must be

taken into account. We do this by constructing 95%-level bootstrap confidence in-

tervals based on the percentile method with 999 bootstrap replications. The interval

between the upper limit of the 95%-level confidence interval for the upper bound and

the lower limit of the 95%-level confidence interval for the lower bound is a 95%-level

confidence interval for the identification region.

Figure 1 displays graphically the worst-case and the dynamic bounds on HIV

prevalence in rural Malawi, along with the complete-case estimates. Using the worst-

case bounds, the identification region is the interval between 3.8% and 34.2% in 2004,

the interval between 2.6% and 40.2% in 2006, and the interval between 2.4% and

46.6% in 2008 (see also Table 2, All regions). Notice that the width of these intervals

increases over time following the pattern of missing data. From Figure 1, we can also

notice that the complete-case estimates are always very close to the lower bound of

the identification region.

Using the dynamic bounds, the identification region is the interval between 3.8%

and 15.9% in 2004, between 4.5% and 28.9% in 2006, and between 4.9% and 46.6% in

2008. Thus, for the first two waves, we have a sizeable reductions of the uncertainty

about HIV prevalence compared to the worst-case bounds (amounting to a reduction

of their width by about 18.2 percentage points in 2004 and 13.2 percentage points in

2006). For the last wave, the reduction of the bound width is instead limited (only
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Figure 1: HIV prevalence for the whole sample by survey year.

2.4 percentage points). This pattern reflects the number of waves available before

and after the point in time where HIV prevalence is estimated. In 2004 only future

information about HIV status can be used. As a consequence, the dynamic upper

bound is lower than the worst-case upper bound but the lower bound is unchanged.

In 2006, both previous and future information about HIV status help reduce the

uncertainty, resulting in a decrease of the upper bound and an increase of the lower

bound. In 2008, since no subsequent wave of the panel is available, only previous

information about HIV status helps reduce the uncertainty, resulting in an increase

of the lower bound with the upper bound unchanged.

Table 2 shows bounds for the different geographical regions of Malawi: North,

Center and South. According to the MDHS, Southern Malawi is the region with

the highest HIV prevalence, followed by the Center and the North. Although the

dynamic bounds are much narrower than the worst-case bounds, they are still too

wide to support this conclusion.
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Table 2: Bootstrapped bounds for the whole sample and by regions.

Year Region Bounds type L† U‡ W§
2004 North Worst-case 0.023 0.285 0.262

Dynamic 0.023 0.133 0.110
Center Worst-case 0.031 0.453 0.422

Dynamic 0.031 0.199 0.168
South Worst-case 0.043 0.339 0.296

Dynamic 0.044 0.195 0.15
All Worst-case 0.038 0.342 0.304

Dynamic 0.038 0.159 0.122
2006 North Worst-case 0.018 0.361 0.343

Dynamic 0.028 0.275 0.247
Center Worst-case 0.018 0.440 0.421

Dynamic 0.033 0.293 0.259
South Worst-case 0.028 0.471 0.443

Dynamic 0.060 0.372 0.312
All Worst-case 0.026 0.402 0.376

Dynamic 0.045 0.289 0.244
2008 North Worst-case 0.023 0.472 0.449

Dynamic 0.037 0.473 0.437
Center Worst-case 0.015 0.436 0.420

Dynamic 0.037 0.438 0.401
South Worst-case 0.026 0.554 0.528

Dynamic 0.068 0.555 0.486
All Worst-case 0.024 0.466 0.442

Dynamic 0.049 0.466 0.417
†Lower bound. ‡Upper bound. §Width.
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Table 3: Bootstrapped bounds by gender and birth cohort.

Gender
Male Female

Year Cohort Bounds type L† U‡ W§ L† U‡ W§
2004 A Worst-case 0.000 0.265 0.265 0.002 0.359 0.357

Dynamic 0.000 0.094 0.094 0.002 0.169 0.167
B Worst-case 0.008 0.321 0.313 0.041 0.42 0.379

Dynamic 0.008 0.139 0.131 0.045 0.218 0.173
C Worst-case 0.020 0.452 0.432 0.042 0.364 0.323

Dynamic 0.020 0.216 0.196 0.04 0.198 0.158
D Worst-case 0.048 0.395 0.347 0.042 0.331 0.289

Dynamic 0.049 0.211 0.162 0.042 0.154 0.113
2006 A Worst-case 0.000 0.455 0.455 0.002 0.529 0.526

Dynamic 0.000 0.322 0.322 0.006 0.385 0.379
B Worst-case 0.000 0.485 0.485 0.027 0.465 0.438

Dynamic 0.008 0.370 0.362 0.057 0.333 0.275
C Worst-case 0.010 0.403 0.392 0.055 0.381 0.326

Dynamic 0.023 0.309 0.286 0.074 0.280 0.207
D Worst-case 0.024 0.393 0.369 0.016 0.362 0.346

Dynamic 0.047 0.305 0.258 0.039 0.236 0.196
2008 A Worst-case 0.000 0.583 0.583 0.008 0.616 0.607

Dynamic 0.000 0.583 0.583 0.015 0.611 0.597
B Worst-case 0.006 0.577 0.572 0.027 0.457 0.429

Dynamic 0.020 0.577 0.558 0.067 0.462 0.395
C Worst-case 0.009 0.485 0.476 0.041 0.440 0.399

Dynamic 0.024 0.485 0.462 0.075 0.437 0.362
D Worst-case 0.016 0.480 0.464 0.015 0.386 0.371

Dynamic 0.047 0.476 0.429 0.039 0.388 0.349
†Lower bound. ‡Upper bound. §Width.
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Table 3 shows that the dynamic bounds are much narrower than the worst-

case bounds also if we consider subgroups characterized by gender and birth cohort.

Again, this is especially true for 2004 and 2006. Although the width of the dynamic

bounds is generally lower for males, meaning that there is more uncertainty about

HIV prevalence among females, the identification regions remain too wide to allow

us to establish a rank by gender.

4.3 Imposing additional IV and MIV restrictions

The IVs considered are: gender differences between the interviewer and the intervie-

wee, interviewer’s experience, interviewer’s age categorised in two classes, and the

month of the first interview attempt. The latter is the only IV available in 2008.

As MIV, we consider the number of sexual partners each respondent had till that

year. This is a valid MIV if the probability of being HIV infected does not fall as

the number of sexual partners increases. Further, because information on IVs and

MIVs is not available for unit nonrespondents, the following analysis is restricted to

the subsample of unit respondents. Detailed results by year, gender and cohort are

contained in Tables 5–7 in the supporting materials.

The identification region for HIV prevalence in 2004, produced by the dynamic

bounds, is the interval between 4.1% and 13.6% in the benchmark case, the interval

between 4.3% and 12% when using the interview month as an IV, and the inter-

val between 4.2% and 13% when using our MIV. The identification region for HIV

prevalence in 2006, is the interval between 3.5% and 16.6% in the benchmark case,

the interval between 3.7% and 15.1% when using the interview month as an IV, and

the interval between 3.6% and 16.6% when using our MIV. The identification region

for HIV prevalence in 2008 is the interval between 4.3% and 30.6% in the benchmark

case, the interval between 4.7% and 26.5% when using the interview month as an
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IV, and the interval between 4.4% and 30.3% when using our MIV. Thus, using the

interview month as an IV reduces the width of the identification region relative to the

benchmark case by 1.7 percentage points in 2004 and in 2006, and by 4.4 percentage

points in 2008. On the other hand, the number of sexual partners does not appear

to be an effective MIV, as it is of little help in narrowing the identification region.

Figure 2 shows the dynamic bounds on HIV prevalence by survey year, separately

by gender and birth cohort, along with the complete-case estimates. The ‘best IV’

available, namely the one that most reduces the width of the identification region,

varies with gender and cohort. In 2004 the best IVs are either the interview month

or the interviewer’s experience, while in 2006 the best IV is always the interview

month. Unlike the case of the whole sample, the MIV restriction now seems to

be more effective in reducing the width of the identification interval, although its

effectiveness varies with gender and cohort.

5 Discussion

Having reliable estimates of HIV prevalence is critical for policy makers. Today, the

gold-standard is estimates based on biomarkers collected in population based surveys.

These surveys, however, are plagued by non-ignorable missing data problems, which

in turn translate into substantial uncertainty about HIV prevalence in the population.

Our paper uses a bounding approach to assess what can be learnt from this type

of data. Its main contribution is to show how worst-case bounds, which are often

distressingly wide, can be narrowed when panel data are available by exploiting the

absorbing nature of HIV infection.

Panel data are typically used to estimate HIV incidence rates. However, they

can also be used to estimate HIV prevalence at different points in time for the same

population.
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Figure 2: HIV prevalences for unit respondents by year, gender and cohort. The
graph shows complete-case estimates, and bootstrapped dynamic bounds in the
benchmark case, when the best IV or MIV restrictions are applied. Cohort A is
the cohort born in 1984-1989, cohort B is the cohort born in 1975-1983, cohort C is
the cohort born in 1965-1974, and cohort D is the cohort born before 1965.

We show that the identifying power of panel data comes from the fact that we are

able to observe in other waves the HIV status of current nonrespondents. By itself,

this is not enough to narrow the worst-case bounds. In fact, among the respondents

in future waves, only the information about negative HIV status can be used to infer
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HIV status in the current wave, so only the upper bound can be reduced relative to

the worst-case. Similarly, information on past HIV status is helpful only if some of

the nonrespondents in the current wave are found to be HIV positive in the past.

In these cases, the availability of panel data helps because it decreases the upper

bound when future information is exploited and increases the lower bound when

past information is exploited.

Applying our dynamic bounds to longitudinal data from Malawi, we obtain a

reduction of the width of the worst-case bounds by about 18.2 percentage points in

2004, 13.2 percentage points in 2006, and 2.4 percentage points in 2008. Introducing

plausible IV and MIV restrictions helps to further narrow the bounds. Ignoring the

missing data problem and only using the complete cases, would give a point estimate

of HIV prevalence that is very close to our lower bound. This estimate may be too

optimistic because, according to our bounds, HIV prevalence could be much higher.

Our approach is easy to implement, it does not require assumptions about the

nature of the missing data mechanism, and it allows to obtain relatively small and

precisely estimated intervals for HIV prevalence. It could also be used for other

applications where panel data are available and credible restrictions may be placed

on the transition probabilities for the outcome of interest.

Our results confirm the importance of keeping low the nonresponse rates, and

to consider unit and item nonresponse separately. They also illustrate the impor-

tance of including in the data information on interviewers’ characteristics, fieldwork

procedures etc, as these variables can be used as Instrumental Variables.

6 Supporting Material
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Table 4: Number of observations and complete-case estimates by survey year, gender
and cohort.

Cohort Gender † 2004 2006 2008
All All n 4008‡ 3926 3733

Prevcc 0.062 0.049 0.051
A Male n 404 400 398

Prevcc 0.003 0.000 0.011
B Male n 374 359 355

Prevcc 0.029 0.015 0.040
C Male n 398 385 338

Prevcc 0.060 0.035 0.040
D Male n 691 662 636

Prevcc 0.094 0.056 0.045
A Female n 474 473 471

Prevcc 0.015 0.020 0.042
B Female n 560 559 552

Prevcc 0.092 0.069 0.070
C Female n 530 528 439

Prevcc 0.082 0.105 0.098
D Female n 577 560 544

Prevcc 0.079 0.040 0.038
†Prevcc is the complete-case estimate of the prevalence.

‡The total number of individuals is 4,008 instead of 4,062

because we drop 54 individuals for which age is missing.
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Table 7: 2008 Bootstrapped bounds for unit respondents.

Cohort Gender Benchmark IV Month MIV
† ‡ Worst Dyn Worst Dyn Worst Dyn

All All L 0.030 0.043 0.033 0.047 0.032 0.044
(n=2825) U 0.305 0.306 0.268 0.265 0.303 0.303

Prevcc=0.050 W 0.276 0.262 0.235 0.218 0.272 0.259
A Male L 0.000 0.000 0.000 0.000 0.000 0.000

(n=253) U 0.348 0.348 0.303 0.307 0.324 0.324
Prevcc=0.006 W 0.348 0.348 0.303 0.307 0.324 0.324

B Male L 0.004 0.008 0.008 0.014 0.004 0.008
(n=238) U 0.357 0.366 0.298 0.298 0.346 0.345

Prevcc=0.029 W 0.353 0.357 0.290 0.284 0.341 0.337
C Male L 0.011 0.019 0.015 0.021 0.015 0.024

(n=264) U 0.341 0.348 0.324 0.326 0.307 0.309
Prevcc=0.036 W 0.330 0.330 0.309 0.304 0.292 0.285

D Male L 0.018 0.035 0.020 0.041 0.018 0.039
(n=514) U 0.354 0.354 0.300 0.301 0.325 0.324

Prevcc=0.043 W 0.337 0.319 0.280 0.260 0.307 0.285
A Female L 0.010 0.014 0.012 0.021 0.014 0.017

(n=293) U 0.396 0.396 0.376 0.381 0.369 0.373
Prevcc=0.040 W 0.386 0.382 0.365 0.360 0.354 0.355

B Female L 0.033 0.053 0.043 0.067 0.037 0.056
(n=430) U 0.314 0.316 0.295 0.298 0.306 0.307

Prevcc=0.068 W 0.281 0.263 0.253 0.230 0.269 0.252
C Fgemale L 0.053 0.075 0.058 0.085 0.058 0.083

(n=375) U 0.344 0.347 0.305 0.305 0.336 0.336
Prevcc=0.099 W 0.291 0.272 0.246 0.220 0.279 0.253

D Female L 0.015 0.022 0.021 0.026 0.017 0.024
(n=458) U 0.269 0.269 0.245 0.244 0.258 0.257

Prevcc=0.038 W 0.253 0.247 0.224 0.219 0.240 0.232
†Prevcc is the complete-case estimate of the prevalence

‡L is the Lower bound, U the Upper bound and W the width.
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A Appendix: Dynamic bounds for arbitrary num-

ber of waves

Consider bounding HIV prevalence at time t in the general case when several waves

of a panel survey are available, either before or after wave t.

A.1 F waves after t

With information on F waves after wave t, the lower bound on πt does not change

while the upper bound is characterised by the following recursion

t : UBt,

t, t+ 1 : UB
(+1)
t = UBt − Pr(Yt+1 = 0, Dt+1 = 1, Dt = 0),

t, t+ 1, t+ 2 : UB
(+2)
t = UB

(+1)
t − Pr(Yt+2 = 0, Dt+2 = 1, Dt+1 = 0, Dt = 0),

· · ·

t, . . . , t+ F : UB
(+F )
t = UB

(+(F−1))
t −

− Pr(Yt+F = 0, Dt+F = 1, Dt+F−1 = 0, . . . , Dt = 0).

Thus we obtain

LB
(+F )
t = LBt,

UB
(+F )
t = UBt −

F∑
f=1

Pr(Yt+f = 0, Dt+f = 1, Dt+f−1 = 0, . . . , Dt+1 = 0, Dt = 0),

and

Wt(+F ) = Wt −
F∑

f=1

Pr(Yt+f = 0, Dt+f = 1, Dt+f−1 = 0, . . . , Dt+1 = 0, Dt = 0).

It is easy to see that increasing the number of future waves decreases the width of

the identification region.
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A.2 P waves before t

With information on P waves before wave t, the upper bound does not change while

the lower bound is characterized by the following recursions

t : LBt,

t− 1, t : LB
(−1)
t = LBt + Pr(Yt−1 = 1, Dt−1 = 1, Dt = 0),

t− 2, t− 1, t : LB
(−2)
t = LB

(−1)
t + Pr(Yt−2 = 1, Dt−2 = 1, Dt−1 = 0, Dt = 0),

· · ·

t− P, . . . , t : LB
(−P )
t = LB

(−(P−1))
t +

+ Pr(Yt−P = 1, Dt−P = 1, Dt−P+1 = 0, . . . , Dt = 0).

Thus we obtain

LB
(−P )
t = LBt +

P∑
p=1

Pr(Yt−p = 1, Dt−p = 1, Dt−p+1 = 0, . . . , Dt−1 = 0, Dt = 0),

UB
(−P )
t = UBt,

and

W
(−P )
t = Wt −

P∑
p=1

Pr(Yt−p = 1, Dt−p = 1, Dt−p+1 = 0, . . . , Dt−1 = 0, Dt = 0).

It is easy to see that increasing the number of past waves decreases the width of the

identification region.
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A.3 P waves before and F waves after t

Combining the previous results gives

LB
(−P,+F )
t = LB

(−P )
t

= LBt +
P∑

p=1

Pr(Yt−p = 1, Dt−p = 1, Dt−p+1 = 0, . . . , Dt−1 = 0, Dt = 0),

UB
(−P,+F )
t = UB

(+F )
t

= UBt −
F∑

f=1

Pr(Yt+f = 0, Dt+f = 1, Dt+f−1 = 0, . . . , Dt+1 = 0, Dt = 0),

and

W
(−P,+F )
t = Wt −

P∑
p=1

Pr(Yt−p = 1, Dt−p = 1, Dt−p+1 = 0, . . . , Dt−1 = 0, Dt = 0)−

−
F∑

f=1

Pr(Yt+f = 0, Dt+f = 1, Dt+f−1 = 0, . . . , Dt+1 = 0, Dt = 0).
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