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Abstract

Evidence suggests that the significantly higher life expectancy levels witnessed over the past centuries

are associated with a lower concentration of survival times, both cross-country and over time. The

purpose of this work is to study the relationships that exist among models for the evolution of survival

distributions, longevity measures, and concentration. We first study relationships between concentration

and cohort longevity through empirical comparisons. We then propose a family of survival models that

can be used to capture such trends in longevity and concentration across survival distributions.

Keywords: Survival analysis; Longevity; Gini index; Life tables.

1 Introduction

The term longevity denotes the long duration of life and is used as a synonym for long life expectancy in

demography. It is well-known that a significant increase in longevity has been witnessed during the past
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1



several centuries. For example, Figure 1 shows how life expectancy has increased since the second half of

the 20th century for a selection of OECD countries.

Figure 1: Life expectancy at birth in four OECD countries from 1950 to 2010 (Source: Elaboration on

Human Mortality Database)
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A recent study by Baudisch (2011) emphasizes the importance of distinguishing between two dimensions

of aging: pace and shape. Pace refers to the time aspect of aging, and it is measured by variables like life

expectancy and longevity, which summarize the timing of death. Shape refers to the age-pattern of mortality

or how mortality changes with age. It captures the time-standardized change in mortality and it reveals

whether mortality (on average) increases or decreases over age, and whether these changes are more or less

pronounced.

On the one hand, populations experienced a prolonged life, which mainly reflects a reduction in the overall

level of mortality, or, as Baudisch (2011) argues, a change in the pace of life. On the other hand, popula-

tions experienced an exceeding concentration of deaths and a shift of the death hump towards higher ages

(Canudas-Romo, 2008; Kannisto, 2000), which implies an increasing steepness of mortality change over the

life-course, or, as Baudisch argues, an increasing steepness of the shape of aging.

Well-known measures in demography that account for lifespan disparity are considered good indicators of

shape, such as the Gini coe�cient or the coe�cient of variation. Intuitively, this can be understood by

recognizing that a high shape value is analogous to low variability in the age at death. Hence, if everyone

died at the same time, variability is zero, and the age-pattern of mortality shows maximum steepness, rising

from zero to infinity at the unique age at death. In contrast, constant or falling mortality patterns would lead
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to high inequality in age at death, many dying early in the life course while a few experience exceptionally

long lifespans.

Indeed, evidence suggests that higher life expectancy is associated with a lower concentration of survival

times, both cross-country and over time. Figure 2 shows the joint trend of longevity and lifetime concentra-

tion for the UK.

Figure 2: Longevity trend (e(0)) versus concentration trend (G(0)) in the UK, 1950-2010 (Source: Elabora-

tion on Human Mortality Database)9
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Shkolnikov et al. (2003) perform an empirical analysis for approximately 45 countries for the years 1960-1990,

revealing a tight negative association between life expectancy at birth and the Gini coe�cient. Specifically,

during the first three quarters of the 20th century the inter-individual inequality in length of life has been

declining. But, in the last three decades this trend has become weaker, with life expectancy continuing to

increase while the decline in the inequality in length of life has slowed down or even stopped in low-mortality

countries.

In human demography, this framework could be related to concepts introduced by the shifting mortality and

compression of mortality hypotheses. The shifting mortality hypothesis suggests a delay in the mortality

schedule, but with a shape that remains the same (Bongaarts and Feeney, 2002; Canudas-Romo, 2008).

The compression of mortality hypothesis suggests a change in variability in the age at death (Fries, 1980;

Kannisto, 2000). Changes in mortality can then be produced by a change in pace or by a change in shape,

and more commonly by changes in both dimensions simultaneously.
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Wilmoth and Horiuchi (1999) also explain these observed patterns by a principal historical change in the age

pattern of mortality. In the first part of the 20th century, the historical lowering of mortality rates was much

more pronounced in the young than in the aged, resulting in more and more concentrated life table deaths

at old ages. In other words, this historical reduction of infant mortality caused great equalization of ages

at death. Since the Gini coe�cient decreases when life table ages at death concentrate around the average

age at death, inequality in length of life has been decreasing during this period. However, after a certain

point in time (in the 1950s, 1960s or 1970s, depending on the country), at which mortality of young ages

had already been reduced to low values, its further reduction was unable to reduce significantly dispersion of

ages at death. Moreover, in the 1980s and 1990s, the mortality decline in countries with low mortality was

more pronounced at old ages than at middle ages. This process increases inequality in length of life, thus

resulting in higher inequality of survival times.

Since the Gini concentration index is scale-invariant, this suggests that the survival times (especially when

examined over time for a given country) may not increase uniformly with the same rate across the whole

population, but may rather evolve according to di↵erent patterns within di↵erent subpopulations.

For example, specific advances in health care that cause an increase in survival for a fraction of the population

may produce an increase in longevity, which may correspond to the observed decrease in the concentration

of survival times. Lastly, the existence of a biological upper limit to human survival could also produce the

observed decreases in concentration.

The purpose of this work is to analyze the e↵ect of changes in survival distributions on the concentration

of survival times and study the relationship between longevity and concentration. We first review the Gini

concentration index for survival data and its link with stochastic dominance (Section 2). We then show that

proportional hazard models are not particularly well-suited to the study of the life shape and pace patterns

observed in human population (Section 3), and we suggest a family of models that can be used to capture

di↵erences in longevity across survival distributions, as well as study how the Gini index evolves under such

models (Section 4). Special cases of the family of models proposed are discussed in Section 5. We close with

discussion in Section 6.

2 The Gini concentration index and Lorenz ordering

The Gini coe�cient is probably the most common statistical index employed in the social sciences for

measuring concentration in the distribution of a positive random variable. It is mainly used in Economics as

a measure of income or wealth inequality; see, e.g., Gini (1912, 1914), Nygard and Sandröm (1981), Kakwani

4



(1980). The Gini concentration index of income distributions measures the relative importance of very high

incomes in the distribution.

The Gini coe�cient has also been used to describe concentration in a distribution of length of life, among dif-

ferent socio-economic groups, and to evaluate inequality in survival times (see, e.g., Hanada 1983, Shkolnikov

et al. 2003).

Consider a nonnegative random variable T with cumulative distribution function F , F (t) = F

T

(t) = P (T 

t), survival function S, S(t) = S

T

(t) = 1 � F

T

(t), probability density function f(t), finite expected value

µ =
R
<+ S(t)dt, and variance V ar(T ). Here we will focus on T as being a survival time.

The Gini coe�cient of concentration corresponding to the cumulative distribution function F (t) is defined

as

G =
�

2µ
=

R
<+

R
<+ |t

1

� t

2

| dF (t
1

)dF (t
2

)

2µ

(see Gini 1912, 1914, or Kendall and Stuart 1977).

The Gini coe�cient varies between 0 (the case of perfect equality) and 1 (perfect inequality), and it is

invariant under scale transformations. For length-of-life distributions, it is equal to 0 if all individuals die at

the same age, and equal to 1 if all people but one die at age 0 and the one individual dies at a positive age.

If a (small) group of individuals lives much longer than the rest of the population, then G will tend to be

large.

Several other equivalent ways to define the Gini index exist. In particular, an alternative expression that

will be used throughout this paper is given by

G = 1�
R1
0

S

2(t)dt
R1
0

S(t)dt
(1)

(see, e.g., Michetti and Dall’Aglio 1957 and Hanada 1983).

It can be shown that the Gini index is consistent with di↵erent orderings of distributions; specifically, such

an index is coherent with the ordering induced by the Lorenz curve L(p), defined as

L(p) =
1

µ

Z
p

0

F

�1(v)dv, 0  p  1,

where F

�1(v) is the left-continuous version of the inverse of F , defined as F�1(v) = inf{y : F (y) � v} (see

Lorenz 1905, Pietra 1915, Gastwirth 1971).

The Lorenz curve associates the cumulative proportion of total survival time with the proportion of individ-

uals, arranged in an ascending order of survival time that “receives” such a proportion of cumulated survival
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time. If the Lorenz curve of the random variable T

1

is never above the Lorenz curve of the random variable

T

2

, then the Gini index assumes lower values for the distribution of T
2

than for the distribution of T
1

.

Indeed, the Gini coe�cient can be expressed in terms of the Lorenz curve L(p) as the area between the

diagonal (equality) 45-degree segment and the Lorenz curve, divided by the whole area below the diagonal

(see Figure 3):

G = 1� 2

Z
1

0

L(p)dp.

Figure 3: Lorenz curve and Gini index

The Gini index is also consistent with other kinds of stochastic dominance (see for example Atkinson 1970,

Muliere and Scarsini 1989, Shaked and Shanthikumar 1994).

3 The proportional hazard regression model with Weibull base-

line

We now move to considering families of models in survival analysis that can be used to capture the simul-

taneous evolution of the concentration in survival times and longevity. Hence, we are interested in studying

the behavior of the Gini index as a function of birth year (considered as the covariate x)

G(x) = 1�
R1
0

S

2(t;x)dt
R1
0

S(t;x)dt
. (2)
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One of the most common models used in the survival analysis for estimating covariate e↵ects is the Cox

proportional hazards model. The Cox proportional hazards model is a semiparametric lifetime regression

model proposed by Cox (1972), which assumes the hazard function for the survival time T to be, when

considering just one covariate x, of the form

r(t;x) = r

0

(t)eax,

where r

0

(t) is an arbitrary baseline hazard function, a is a regression parameter, and x the covariate.

Under this model, the hazard function is assumed to increase exponentially per unit increase of the covariate,

so the covariate therefore has a constant multiplicative e↵ect on the hazard rate across all values of t.

The proportional hazards regression model assumes the following structure for the conditional (on x) survival

function:

S(t;x) = S

0

(t)r(x), (3)

where S

0

(t) is an arbitrary baseline survival function and r(x) is the risk score that is the exponential

transformation of the linear predictor eax (see Lawless, 2003).

As a special case we consider a baseline survival function belonging to the Weibull family, that is S

0

(t) =

e

�(t/↵)

�

, with ↵,� > 0. We have the following result1:

Proposition 3.1. Assuming a proportional hazards regression model with Weibull baseline with parameters

(↵,�), that is S

0

(t) = e

�(t/↵)

�

, the Gini index is equal to

G(x) = 1� (0.5)1/� ,

which implies that the Gini index is constant with respect to the covariate x.

Proof. Consider the Gini index as a function of x, defined in (2)

G(x) = 1�
R1
0

S

2(t;x)dt
R1
0

S(t;x)dt
. (4)

Under the Cox model as in (3), the integrand function of the denominator in (4) becomes

S(t;x) = e

�r(x)·(t/↵)� = e

�(r(x)

1/� · t
↵ )

�

= e

�(t/↵

⇤
)

�

,

with ↵

⇤ = ↵

r(x)

1/� . Therefore, S(t;x) is still the survival function of a Weibull distribution with parameters

(↵⇤ = ↵

r(x)

1/� ;�).

From Bonetti, Gigliarano and Muliere (2009) we know that if S(t) = e

�(t/↵)

�

(Weibull distribution with

parameters (↵,�)), then the Gini index G as defined in (1) is equal to G = 1 � (0.5)1/� , hence it does not

1Ostasiewicz and Mazurek (2013) provide a numerical estimation of the Gini index under the Weibull distribution.
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depend on the scale parameter ↵. Therefore, G(x) will also not depend on the scale parameter (which is a

function of x), but instead only on the shape parameter �, which is indeed constant with respect to x.

Therefore, the proportional hazards model does not seem to be suitable for capturing the phenomenon of

our interest, that is, the decreasing behavior of the Gini index of concentration as a function of the cohort

year of birth.

4 The log-scale-location family of failure time models

We now discuss a family of regression models aimed at modeling the joint behavior of life expectancy

and concentration in lifetimes over time. We consider the following log-scale-location model (see Lawless,

2003):

S(t;x) = S

0

✓
log(t)� u(x)

b(x)

◆
, (5)

where u(x) 2 R, b(x) > 0, and x is any generic covariate. For our purposes, we will use x to indicate the

cohort year of birth.

If T has log-scale-location distribution as in (5) and Y = log(T ), then we say that Y has a scale-location

distribution of the type

S(y;x) = S

0

✓
y � u(x)

b(x)

◆
. (6)

Common distributions that satisfy model (5) are the following: the Weibull, log-normal, and log-logistic

distributions for T correspond, respectively, to extreme value, normal, and logistic distributions for Y .

We now show that the family of models proposed in (5) provides, under a suitable choice of the parameters,

a complete ordering of survival distributions in terms of concentration.

Theorem 1. If S(t;x) = S

0

⇣
log(t)�u(x)

b(x)

⌘
with S

0

strictly decreasing and where b(x) is a non-decreasing

(non-increasing) function, then the Gini index G(x) = 1�
R 1
0 S

2
(t;x)dtR 1

0 S(t;x)dt

is a non-decreasing (non-increasing)

function of x, for any bounded function u(x).

The proof of Theorem 1 requires some additional preliminary definitions and results from the theory of

stochastic orderings (Shaked and Shanthikumar 2002). We first recall the following definitions of Dispersive

order, Star order, and Lorenz order :

Definition 4.1. Let T
1

and T

2

be two random variables with distribution functions F and G, respectively.

Let F�1 and G

�1 be the right-continuous inverses of F and G, respectively. Then T

1

is said to be smaller
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than T

2

in the dispersive order (denoted as T

1


disp

T

2

) if

F

�1(�)� F

�1(↵)  G

�1(�)�G

�1(↵), 8 0  ↵  �  1.

The dispersive order compares variables T

1

and T

2

in terms of variability, since it requires the di↵erence

between any two quantiles of T

1

to be smaller than the corresponding quantiles of T

2

(see Shaked and

Shanthikumar 2002, page 148).

Definition 4.2. Consider non-negative random variables T

1

and T

2

as defined in Definition 2.1. We say

that T
1

is smaller than T

2

in the star order (denoted by T

1

⇤ T

2

) if

G

�1

F (t
1

)/t
1

is increasing in t

1

� 0.

Definition 4.3. Consider non-negative random variables T

1

and T

2

as defined in Definition 2.1. We say

that T
1

is smaller than T

2

in the Lorenz order (denoted T

1


Lorenz

T

2

) if

1

E (T
1

)

Z
F

�1
(u)

0

t

1

dF (t
1

) � 1

E (T
2

)

Z
G

�1
(u)

0

t

1

dG(t
1

), 8u 2 (0, 1].

Note that the Lorenz order T
1


Lorenz

T

2

means that the Lorenz curve of T
1

always lies above the Lorenz

curve of T
2

, and therefore the Gini index of T
1

is always smaller than the Gini index of T
2

.

The following result from Shaked and Shanthikumar (2002) shows the relationship existing among the pre-

vious orders:

Theorem 2. [Shaked and Shanthikumar, 2002] Let T
1

and T

2

be two non-negative random variables. Then

a) T

1

⇤ T

2

, log(T
1

) 
disp

log(T
2

) (p.214)

b) T

1

⇤ T

2

) T

1


Lorenz

T

2

(p.223)

Therefore, Theorem 2 reveals that star order is equivalent to the dispersive order between the log transfor-

mation of the random variables, and that Lorenz order (and hence Gini order) is implied from the former

two orderings.

We can now prove Theorem 1 above.

Proof of Theorem 1. Without loss of generality in the proof we take b(x) non-decreasing.

Let b
1

= b(x
1

), b
2

= b(x
2

), u
1

= u(x
1

), u
2

= u(x
2

), with x

1

< x

2

. Therefore, b
1

 b

2

. Let Y
1

= log(T
1

) and

Y

2

= log(T
2

) and � = F

Y1(y1) = 1� S

0

⇣
y1�u1

b1

⌘
and � = F

Y2(y2) = 1� S

0

⇣
y2�u2

b2

⌘
.

The inverse functions are F

�1

Y1
(�) = u

1

+ b

1

S

�1

0

(1� �) and F

�1

Y2
(�) = u

2

+ b

2

S

�1

0

(1� �).

Therefore,

F

�1

Y1
(�)� F

�1

Y1
(↵) = u

1

+ b

1

S

�1

0

(1� �)� u

1

� b

1

S

�1

0

(1� ↵) = b

1

(S�1

0

(1� �)� S

�1

0

(1� ↵)),
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for 0  ↵  �  1. Assuming that S

0

is a strictly decreasing function and since 1 � � < 1 � ↵, then

S

�1

0

(1� �)� S

�1

0

(1� ↵) > 0.

Condition F

�1

Y1
(�)�F

�1

Y1
(↵)  F

�1

Y2
(�)�F

�1

Y2
(↵) is equivalent to b

1

(S�1

0

(1� �)�S

�1

0

(1�↵))  b

2

(S�1

0

(1�

�)�S

�1

0

(1�↵)), which reduces to b

1

 b

2

. Therefore, dispersion ordering as in Definition 2.1.(Y
1


disp

Y

2

)

is satisfied, as is, from Theorem 2, Lorenz ordering as in Definition 2.3. (T
1


Lorenz

T

2

); see Section 2. This

implies that G(x
1

)  G(x
2

), given b(x) non-decreasing as a function of x.

Theorem 1 shows that under the class of models as in (5), the Lorenz ordering, and hence the Gini ordering,

are always satisfied. Specifically, the Gini index always decreases as the cohort year of birth increases, if the

shape parameter b(x) increases; it decreases, otherwise.

We now examine the behavior of the survival distributions of two random variables satisfying the Gini

ordering.

Corollary 1. Under the model in Theorem 1 with u(x) = u, for any u 2 R constant, and with b(x) non-

decreasing (non-increasing), the Gini index G(x) is a non-decreasing (non-increasing) function of x, and:

(i) for t > e

u, S(t;x) is a non-decreasing (non-increasing) function of x;

(ii) for t < e

u, S(t;x) is a non-increasing (non-decreasing) function of x; and

(iii) for t = e

u, S(t;x) is constant with respect to x.

Proof. Without loss of generality in the proof we take b(x) non-decreasing.

(i) If t > e

u, hence log(t) > u and assuming x

1

< x

2

then S(t;x
1

) = S

0

⇣
log(t)�u

b(x1)

⌘
 S

0

⇣
log(t)�u

b(x2)

⌘
=

S(t;x
2

);

(ii) If t < e

u, hence log(t) < u and assuming x

1

< x

2

then S(t;x
1

) = S

0

⇣
log(t)�u

b(x1)

⌘
� S

0

⇣
log(t)�u

b(x2)

⌘
=

S(t;x
2

);

(iii) If t = e

u, hence log(t) = u, S(t;x) = S

0

⇣
0

b(x)

⌘
is constant with respect to x.

Corollary 1 reveals that survival functions will cross when Gini (or Lorenz) ordering is satisfied. A graphical

illustration is provided in Figure 4.

We now move on studying how life expectancy behaves under the log-scale location model in (5). The

following result provides a clear expression of life expectancy as a function of the year of birth x.
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Figure 4: Illustration of Corollary 10.00
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Corollary 2. Consider a random variable T following a log-scale-location distribution S(t;x) as in (5).

Then the expected value of T , as a function of the covariate x, satisfies the following condition:

µ(x) = E(T ;x) = e

u(x)

E

⇣
e

R·b(x)
⌘
, (7)

where R is a standardized random variable following the distribution S

0

(r) as in (5).

Proof.

µ(x) = E(T ;x) =

Z

R+

S(t;x)dt =

Z

R+

S

0

✓
log(t)� u(x)

b(x)

◆
dt

= b(x)

Z

R
S

0

(r)eu(x)+r·b(x)
dr

✓
change of variable: r =

log(t)� u(x)

b(x)

◆

= e

u(x)

b(x)

Z

R
S

0

(r)er·b(x)dr

= e

u(x)

b(x)

"
e

r·b(x)

b(x)
S

0

(r)

����
1

�1
+

Z

R

e

r·b(x)

b(x)
f

0

(r)dr

#
(integrating by parts).

We now examine the convergence of the first addend:

lim
r!1

e

rb(x)

S

0

(r) = lim
r!1

e

rb(x)

e

�e

r

= lim
r!1

e

rb(x)�e

r

= 0.
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Therefore,

µ(x) = e

u(x)

b(x)

Z

R

e

rb(x)

b(x)
f

0

(r)dr = e

u(x)

E

⇣
e

R·b(x)
⌘
.

Note that Corollary 2 implies that the life expectancy µ(x) corresponds to a linear transformation of the

moment generating function of the standardized random variable R = (log(T )�u(x))/b(x) with the baseline

distribution S

0

(r) of the log-scale-location family (5), evaluated at b(x).

5 Some special cases

We now focus on some special cases of the log-scale-location family introduced in (5).

5.1 Weibull baseline hazard function

We first assume that lifetime T follows a Weibull distribution, with p.d.f. written in the form

f(t;↵,�) =
�

↵

✓
t

↵

◆
��1

· exp
�
�(t/↵)�

�
, t � 0

where ↵ > 0 and � > 0 are the scale and the shape parameter, respectively. The expected value of a

Weibull distribution is E(T ) = ↵ · �(1 + 1

�

), with �(·) being the Gamma function. See Lawless (2003, page

218).

It can be shown that the random variable Y = log(T ) follows the extreme value distribution and belongs to

the location-scale family of distributions with p.d.f.

f(y;u, b) =
1

b

e

(y�u)/b exp
⇣
�e

(y�u)/b

⌘
, �1 < y < 1,

where u = log(↵) and b = �

�1. See Lawless (2003, page 218). The moment generating function of Y is

M

Y

(✓) = �(1 + ✓); see Lawless (2003, page 21).

Here we allow the parameters u and b to depend on a covariate x; therefore, we consider the following p.d.f.

for Y

f(y;u(x), b(x)) =
1

b(x)
e

(y�u(x))/b(x) exp
⇣
�e

(y�u(x))/b(x)

⌘
, �1 < y < 1, (8)

If Y = log(T ) has an extreme value distribution as in (8), then the standardized random variable R =

log(T )�u(x)

b(x)

has survival distribution S

0

(r) = e

�e

r

and p.d.f. f
0

(r) = e

�e

r · er for r 2 R.
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Assuming u(x) � 0 w.l.o.g., then, from Corollary 2 we have

E(T ;x) = µ(x) = e

u(x) · �(1 + b(x)), (9)

where �() is the Gamma function.

Therefore, under the Weibull/extreme value model G(x) is always decreasing in x, but this is not necessarily

true for life expectancy µ(x), whose behavior depends on the assumptions around the functional form of b(x)

and of u(x) as in (9).

In particular, if u(x) = u is constant, then: (i) for any decreasing function b(x) such that 0 < b(x) < 0.4616,

G(x) is a decreasing function and µ(x) is a increasing function of x, while (ii) for any decreasing function

b(x) such that b(x) � 0.4616, both G(x) and µ(x) are decreasing functions of x.

5.2 Log-normal baseline hazard function

If T follows a log-normal distribution with parameters m
0

and �

2, then Y = log(T ) has a normal distribution

with parameters m
0

and �

2. Under this setting, for any non-increasing function b(x) and any non-increasing

function u(x), both G(x) and µ(x) are non-increasing functions of x.

In particular, from Corollary 2 we have that µ(x) = e

u(x)

E(eR·b(x)), where R has a standard normal distri-

bution. Therefore,

µ(x) = e

u(x)+

1
2 b(x)

2

,

which is an increasing function of b(x) and u(x), and therefore a non-increasing function of x.

5.3 Log-logistic baseline hazard function

Consider the lifetime T having a log-logistic distribution with p.d.f. written in the form

f(t;↵,�) =
(�/↵)(t/↵)��1

(1 + (t/↵)�)2
, t � 0

with parameters ↵,� > 0. See Lawless (2003, page 23).

It can be shown that if T follows a log-logistic distribution, then the transformation Y = log(T ) has logistic

distribution with p.d.f.

f(y;u, b) =
b

�1 exp(�(y � u)/b)

(1 + exp(�(y � u)/b))2
, �1 < y < 1,

where u = log(↵) and b = �

�1. See Lawless (2003, page 23).
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The standardized random variable R = (Y � u)/b has p.d.f. f

0

(r) = e

�r

(1+e

�r
)

2 for r 2 R and moment

generating function M

R

(✓) = Be(1 � ✓; 1 + ✓) for ✓ 2 (�1, 1), where Be(·; ·) is the Beta function; see

Johnson-Kotz-Balakrishnan (1995, page 113).

If Y = log(T ) has a logistic distribution with parameters b = b(x) and u = u(x), and assuming u(x) � 0

w.l.o.g., then E(T |x) = µ(x) = e

u(x) ·Be(1� b(x); 1 + b(x)).

Since Be(1 � b(x); 1 + b(x)) is a decreasing function of b(x) for negative values of b(x) that are out of the

range of b(x), and it is an increasing function of b(x) for positive values of b(x), we conclude that for any

decreasing and positive function b(x) and any non-increasing and positive function u(x), both G(x) and µ(x)

are decreasing functions of x.

Summing up, we have seen that the log-scale-location family is a flexible model that allows for modeling

di↵erent scenarios. On the one hand, some of the distributions belonging to that family allow for modeling

a situation where, as cohort year of birth x increases, lifetimes become less concentrated (i.e., Gini index

decreases) while life expectancy µ(x) increases. This is the case of Weibull baseline distribution under suitable

choices of the range of function b(x). On the other hand, other members of the log-scale-location family allow

for modeling situations where, as cohort year of birth x increases, lifetimes become more concentrated (i.e.,

Gini index increases) and life expectancy µ(x) increases. This happens under the models with log-normal

or the log-logistic baseline distributions. According to empirical evidence, one may observe that over time

and/or across countries, the log-scale-location family provides a semi-parametric method for estimating the

phenomenon under observation.

6 Conclusions

The class of models that we have focused on allows the study of some of the relationships that exist among

survival distributions and concentration. Longevity measures may also be studied within such a promising

framework. Indeed, from the second half of the 20th century, we have seen that the general increase in

longevity around the globe has been accompanied by a broad decline in concentration of survival times.

Further work will focus on the extension of the results to other families of distributions and on the estimation

of model parameters. With respect to the second direction, we will consider two di↵erent types of data: (i)

population datasets, where we will work with people in di↵erent birth cohorts, and (ii) subject-specific

datasets derived from pension funds, where we will work in the presence of right-censoring.

14



References

Atkinson, T. (1970). On the Measurement of Inequality. Journal of Economic Theory, 2, 244-263.

Baudisch, A. (2011). The pace and shape of ageing. Methods in Ecology and Evolution, 2(4), 375-382.

Bonetti, M., Gigliarano, C. and Muliere, P. (2009). The Gini concentration test for survival data.

Lifetime Data Analysis, 15, 493-518.

Bongaarts, J. and Feeney, G. (2002). How long do we live? Population and Development Review, 28(1),

13-29.

Canudas-Romo, V. (2008). The modal age at death and the shifting mortality hypothesis. Demographic

Research, 19(30), 1179-1204.

Cox, D. R. (1972). Regression models and life-tables (with discussion). Journal of the Royal Statistical

Society, Series B, 34, 187 - 220.

Fries, J. F. (1980). Aging, natural death, and the compression of morbidity. New England Journal of

Medicine, 303(3), 130-135.

Gastwirth, J.L. (1971). A General Definition of the Lorenz Curve. Econometrica, 31, 1037-1039.
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